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Abstract—For the first time, microwave noise and power per- TABLE |
formance of metamorphic InP heterojunction bipolar transistors LAYER STRUCTURE OFMM-HBT
(MM-HBTS) grown on GaAs substrates are reported. We find that : :
microwave performance of MM-HBTSs is comparable to that of lat- Layers |Composition| DOPNG [ Thickness
tice-matched InP heterojunction bipolar transistors of identical de- AL nm
sign. The preliminary results imply that the superior performance Cap InGaAs | 2x10 _Si 100
of InP heterojunction bipolor transistors can be confidently ex- InP 2X1017 Si 60
ploited with the more mature manufacturing technology of GaAs. Emitter InP 3x10_Si 90
A . . . Base InGaAs | 2x10" Be 47
Index Terms—Heterojunction bipolar transistors, heterojunc- nGaAs | 5<107 si 20
tions, microwave transistors. =
InGaAs | 1x10™ Be 10
Collector (nP 1x10"° Si 10
15 o
. INTRODUCTION InP__15x10__Si 290
InP 5x10' Si 8
HE purpose of this paper is to assess the viability of InGaAs | 5x10"° si 450
InP metamorphic InP heterojunction bipolar transistors InP 50
(MM-HBTSs) that are fabricated on a GaAs substrate. We report, Buffer Ino.ssGag 2P — InP 1500
for the first time, microwave noise and power performance of InP Cals 100

MM-HBTs grown on a GaAs substrate. We find the performance Gahs (100) S.. Substrate

of InP MM—-HBTSs is comparable to that of lattice-matched InP

heterojunction bipolar transistors (LM-HBTS) of identicalgTs The following is the first comprehensive comparison of

design, but fabricated on an InP substrate. This finding implig$icrowave noise and power performance of MM—HBTS with
that high-performance InP heterojunction bipolar transistof$ai of LM—HBTSs.

(HBTs) can be manufactured at lower cost and higher volume
by the better established GaAs foundries. Il DEVICE DESCRIPTION
HBTs lattice matched (LM) to InP (i.e., LM-HBTS) have ’
demonstrated superior microwave noise and power performancé&able | lists the HBT layer structure that was grown
[1], [2] to that of GaAs HBTs. However, the brittle nature, smalinetamorphically on a GaAs substrate by using solid-source
size, and high cost of InP substrates hinder high-volume ammblecular beam epitaxy (MBE). The structure includes an InP
low-cost manufacturing. These limitations can be alleviatesinitter, an 19.;3G&.47As base, and an yy3Gay 47As—InP
by growing the InP structure metamorphically on a GaAs subemposite collector. A linearly graded,Ba, P (x = 0.48
strate. Metamorphic (MM) high electron-mobility transistorso 1) buffer layer is used to relieve the strain between GaAs
(HEMTs) have already exhibited excellent performance armohd InP. The InGaAs/InP composite collector structure is used
reliability [3], [4]. By contrast, little has been reported on MMto avoid current blocking. A dipole doping is employed at
the InGaAs/InP interface in the composite collector to further
Manuscript received March 21, 2001; revised August 18, 2001. This woF@duce the current blocking effect [5]. Device fabrication is
was supported by the National Science and Technology Board of Singapegsentially the same as that for the LM—HBTSs, which employs

(EMT/99/011) under the Monolithic Microwave Integrated Circuit Prograny standard mesa isolation process. Details of the fabrication
Phase 2.
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ical University, 639798 Singapore. _ the lower current gain is probably due to a rougher base—emitter
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Fig. 1. Collector characteristics of an MM—HBT and an LM-HBT with a
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g >;05 pm50errxt§2rr. {ﬁe EMQH?BOT. bbééﬂq‘ff for the MM-HBT and /s = Fig. 2.  Maximum available gain (MAG) and current gajh¥2|) showingf
s ' p- andf,,. fora’5x 5 pm? MM—HBT.

TABLE 1l & 10 25
COMPARISON OFDC AND RF CHARACTERISTIC FORMM-HBT AND )
LM-HBT WITH 5 x 5 g¢m? EMITTER AREA § * -
& 8t BTSRRI
7] ’.-." _w--¥ T
B@ BVcgo | Peak Peak E sl o w7 l1s 5
a o 4]
9 s’

l=10m | (V) | £ (GHD) | fuu(GHE) S P 8
A a4 {10 H
: g
é .v/._'/""" g
MM HBT 40 9.8 48 42 g 2+ 'V”'"'/r—'—’. 15 g

LM HBT 180 9.2 73 52 0 1 L ! L 1 0

0 2 4 6 8
COLLECTOR CURRENT (mA)

and is c_omparable between MM- and_ LM-HBTs (Table II). Aﬁig. 3. Comparison at 2 GHz of (—) minimum noise figure and (---)
shown in Fig. 2, the cutoff frequencig& and fyax of the  associated gain betwees)@n MM-HBT and ) an LM-HBT. In both cases,
MM-HBT are 48 and 42 GHz, respectivelfy and fyax of he emitterarea= 5 x 5um® andVeg = 1.5 V.

the LM—HBT are higher at 70 and 50 GHz, respectively. De-

tailed analysis suggests that the lowferand fyrax values of 12 x T T 15
the MM—HBT are due to higher base and collector transit time
75 and 7¢ rather than the base—collector capacitan€gc() 10 1% &
and base—emitter capacitancgs) and resistances, as they are 2
found to be the same for both types of devices. __&r 15 %
o
3 )
1. M ICROWAVE NOISE PERFORMANCE K 6 .\'\-\-\. 0 E
For evaluation of microwave noise performance, several 1s g
5 x 5 um? devices have been measured using an ATN NPE 2
automated noise—pull measurement system. Fig. 3 compare ,L 110 <
the minimum noise figurel iy and associated gain(y)
at 2 GHz and different collector current. As expectédyn o o "

decreases linearly with lower collector current for both types 0 2 4 6 8 10 12 14 16 18 20 22

of devices and reaches a minimum and then rises again at vel FREQUENCY (GHz)

low collector current {c < 1 mA). Fyin reaches as low as

2 dB for MM-HBTSs, whereas the same approaches 1.0 dB fag. 4. Frequency versuSyix(e) and associated gaimy for a5 x 5 jum?
LM—-HBTSs, which is comparable to reported results [1]. Witlgmitter area MM-HBT afc, = 1 mA, Vor = 2 V.

I = 2.1 mA, the MM-HBT exhibits anFyy of 2.7 dB and

(G4 of 18 dB. In comparison, the LM-HBT has both lowelhigher bulk recombination, performs similarly to the MM-HBT
Fyn and lowerG 4. The lowerFyy is probably due to lower with an Fyn of 2.3 dB and a7 4 of 18 dB ati¢ = 2.1 mA.
bulk recombination in the LM—HBT. These results are typicas seen in Fig. 4, thé iy increases with frequency, contrary
of more than ten HBTs of each type. It is worth noting thab the reported results [1], presumably because of loyer
one particular LM—HBT with a lowep (45) and, presumably, values of these devices.
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Fig. 6. Comparison at 7.5 GHz of (—) maximum output power and (- - -) PAE
Fig. 5. Output power and PAE between an MM-HBT and LM-HBT abetween ¢) an MM-HBT and ) an LM—HBT at different collector voltages.
25GHzVer =4V, Ic = 2 mA emitter area 5< 20 um?=. I = 7 mA emitter area= 5 x 20 pm?.

IV. MICROWAVE POWER PERFORMANCE 1 10 g
Microwave power measurements on these HBTs were carried %%, do 3
out using an ATN LP1 load—pull system. Fig. 5 compares the € o AAJ“MM %
power performance of an MM—HBT and LM-HBT. The devices g .(o’. /A“ E}
were driven by a constant voltage source in series with a resistor § 5t /.,0’ /x‘ 11 g
at the base to facilitate a self-biasing current. A resistance of & o /‘/‘ iyt g
1 K2 for LM—HBT and 750(2 for MM—HBT were found to be Bof ¢ y A +/+’+ XX, 20 §
adequate to deliver high power. Both HBTs have an emitter area g A: xxx/{xx.xx )Xe( %
of 5 x 20 um? and are biased for class-AB operation. All the 5 x{?"” J —e—M-power | 40 5
measurements were carried out on an un-thinned wafer without £ K AT Nipower £
any heat-sinking mechanism in place. . pad . . . | —X—MM-COI ©
When tuned for maximum power, the MM HBT delivered '“125 20 15 10 5 0 5 10'40
18 dBm (64 mW) and 40% power-added efficiency (PAE) at Input Power (dBm)

2.5 GHz, whereas the LM-HBT exhibited 20 dBm (100 mW

or 1 mW/un¥) and 42% PAE at the same frequency and biasy. 7. Comparison at 2.5 GHz of the COI between an MM-HBT and
conditions ¥ cr = 4.0 V) (Fig. 5). When tuned for maximum LM-HBT a2t quiescent bias oV cg = 3.5 V. I = 2 mA emitter area=
efficiency, the same MM device offered 59% PAE with saturated™ 2°/™ -

output power of 14.5 dBm (30 mW), whereas the LM device

exhibited 60% PAE with 15.5-dBm output power. No harmoni%%irgs :(;g;i;taessgjvl\:/iagrl p?e?fg?vr;z;hcztvsﬁ;hn%g-ciﬂgc%x;gl?;;e
i I A i he LM—HBT exhibits th . .
tuning was employed. In comparison, the exhibits t &educed from 3 to 2 V. On the other hand, higher bias voltage

power comparable to the benchmark [2], but somewhat redudd ¢ i ible due t tate breakd Thi
power performance of MM—HBTs may be attributed to the self’” CUeMNt Was NOt possibie due 1o on-state breakcown.  This

heating mechanism due to poorer thermal conductivity of tIﬁ'@p“es that better power performance can be achieved by

GaAs substrate. The power performance is expected to increi&Leasing the collector thickness beyond the present 3500 A.

by thinning the wafer and by providing adequate heat-sinking
arrangements.

The load reflection coefficients for the maximum power- A tow-tone third-order distortion measurement was per-
tuned condition were 0.24 153 for LM devices and 0.44/ formed using an ATN LP1 load—pull system at 2.5 GHz in order
99° for MM devices. The source reflection coefficients for théo evaluate the nonlinear performance of these devices. The
same were 0.61/ 74° and 0.32 / 18’ for LM and MM devices, load and source impedance were tuned for maximum efficiency
respectively. Both source and load conditions reflect existenaed the third-order intermodulation (IM3) products were
of much higher capacitance (charges) in MM devices companegasured by a spectrum analyzer. Fig. 7 depicts the two-tone
to LM devices, which need to be improved in order to achiefandamental power and the carrier-over-intermodulation (COI)
greater power, efficiency, and high speed. ratio versus input power. Under small-signal operation, the LM

At an upper frequency of 7.5 GHz, the & 20 um? device exhibits a greater COl ratio of 40 dBc compared to MM
MM—-HBTs maintains marginally lower power performance oflevices (30 dBc). The distortion products for MM device do
17 dBm (50 mW) with lower PAE of 23% and small-signal gaimot increase as rapidly as that of an LM device and, at higher
of 5 dB. The LM device exhibits 18.5 dBm (72 mW) with 34%power and IM3, products for MM devices are lower than that
PAE and small-signal gain of 9.5 dB. Under constant curreaf LM devices. This signifies that the MM devices may have

V. DISTORTION PERFORMANCE
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a higher degree of capacitive nonlinearity, cancelling out t
resistive nonlinearity resulting in lower distortion products ¢
higher power levels [7].
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VI. CONCLUSION
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