

# Microwave Noise and Power Performance of Metamorphic InP Heterojunction Bipolar Transistors

Subrata Halder, *Member, IEEE*, Yong Zhong Xiong, *Member, IEEE*, Geok-Ing Ng, *Senior Member, IEEE*, Hong Wang, *Member, IEEE*, Haiqun Zheng, *Member, IEEE*, K. Radhakrishnan, *Member, IEEE*, and James C. M. Hwang, *Fellow, IEEE*

**Abstract**—For the first time, microwave noise and power performance of metamorphic InP heterojunction bipolar transistors (MM–HBTs) grown on GaAs substrates are reported. We find that microwave performance of MM–HBTs is comparable to that of lattice-matched InP heterojunction bipolar transistors of identical design. The preliminary results imply that the superior performance of InP heterojunction bipolar transistors can be confidently exploited with the more mature manufacturing technology of GaAs.

**Index Terms**—Heterojunction bipolar transistors, heterojunctions, microwave transistors.

## I. INTRODUCTION

THE purpose of this paper is to assess the viability of InP metamorphic InP heterojunction bipolar transistors (MM–HBTs) that are fabricated on a GaAs substrate. We report, for the first time, microwave noise and power performance of InP MM–HBTs grown on a GaAs substrate. We find the performance of InP MM–HBTs is comparable to that of lattice-matched InP heterojunction bipolar transistors (LM–HBTs) of identical design, but fabricated on an InP substrate. This finding implies that high-performance InP heterojunction bipolar transistors (HBTs) can be manufactured at lower cost and higher volume by the better established GaAs foundries.

HBTs lattice matched (LM) to InP (i.e., LM–HBTs) have demonstrated superior microwave noise and power performance [1], [2] to that of GaAs HBTs. However, the brittle nature, small size, and high cost of InP substrates hinder high-volume and low-cost manufacturing. These limitations can be alleviated by growing the InP structure metamorphically on a GaAs substrate. Metamorphic (MM) high electron-mobility transistors (HEMTs) have already exhibited excellent performance and reliability [3], [4]. By contrast, little has been reported on MM

Manuscript received March 21, 2001; revised August 18, 2001. This work was supported by the National Science and Technology Board of Singapore (EMT/99/011) under the Monolithic Microwave Integrated Circuit Program Phase 2.

S. Halder, G.-I. Ng, and H. Zheng were with the Microelectronic Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore. They are now with DenseLight Semiconductors Pte. Ltd., 639798 Singapore.

Y. Z. Xiong, H. Wang, and K. Radhakrishnan are with the Microelectronic Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore.

J. C. M. Hwang is with the Compound Semiconductor Technology Laboratory, Lehigh University, Bethlehem, PA 18015 USA.

Publisher Item Identifier S 0018-9480(01)10450-3.

TABLE I  
LAYER STRUCTURE OF MM–HBT

| Layers                    | Composition                                   | Doping<br>cm <sup>-3</sup> | Thickness<br>nm |
|---------------------------|-----------------------------------------------|----------------------------|-----------------|
| Cap                       | InGaAs                                        | 2x10 <sup>19</sup> Si      | 100             |
|                           | InP                                           | 2x10 <sup>19</sup> Si      | 60              |
| Emitter                   | InP                                           | 3x10 <sup>17</sup> Si      | 90              |
|                           | InGaAs                                        | 2x10 <sup>19</sup> Be      | 47              |
| Collector                 | InGaAs                                        | 5x10 <sup>15</sup> Si      | 40              |
|                           | InGaAs                                        | 1x10 <sup>18</sup> Be      | 10              |
|                           | InP                                           | 1x10 <sup>18</sup> Si      | 10              |
|                           | InP                                           | 5x10 <sup>15</sup> Si      | 290             |
|                           | InP                                           | 5x10 <sup>18</sup> Si      | 8               |
|                           | InGaAs                                        | 5x10 <sup>18</sup> Si      | 450             |
|                           | InP                                           |                            | 50              |
| Buffer                    | In <sub>0.48</sub> Ga <sub>0.52</sub> P → InP |                            | 1500            |
|                           | GaAs                                          |                            | 100             |
| GaAs (100) S.I. Substrate |                                               |                            |                 |

HBTs. The following is the first comprehensive comparison of microwave noise and power performance of MM–HBTs with that of LM–HBTs.

## II. DEVICE DESCRIPTION

Table I lists the HBT layer structure that was grown metamorphically on a GaAs substrate by using solid-source molecular beam epitaxy (MBE). The structure includes an InP emitter, an In<sub>0.53</sub>Ga<sub>0.47</sub>As base, and an In<sub>0.53</sub>Ga<sub>0.47</sub>As–InP composite collector. A linearly graded In<sub>x</sub>Ga<sub>1-x</sub>P (x = 0.48 to 1) buffer layer is used to relieve the strain between GaAs and InP. The InGaAs/InP composite collector structure is used to avoid current blocking. A dipole doping is employed at the InGaAs/InP interface in the composite collector to further reduce the current blocking effect [5]. Device fabrication is essentially the same as that for the LM–HBTs, which employs a standard mesa isolation process. Details of the fabrication technique are reported in [6].

Fig. 1 shows typical collector characteristics of an MM–HBT with an emitter area of 5 × 5 μm<sup>2</sup>. The common-emitter current gain  $\beta$  of the MM–HBT peaks at 40, while that of an LM–HBT of comparable size peaks at 180. Detailed analysis shows that the lower current gain is probably due to a rougher base–emitter interface, as well as increased bulk recombination in the base. The open-base breakdown voltage  $BV_{CEO}$  is greater than 9 V

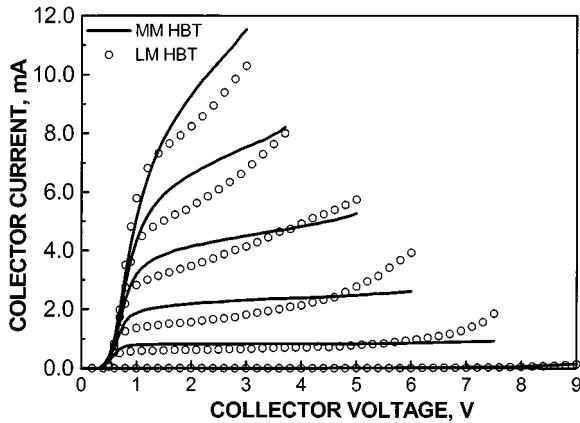



Fig. 1. Collector characteristics of an MM-HBT and an LM-HBT with a  $5 \times 5 \mu\text{m}^2$  emitter.  $I_B = 0, 50 \dots 250 \mu\text{A}$  for the MM-HBT and  $I_B = 0, 10 \dots 50 \mu\text{A}$  for the LM-HBT, bottom up.

TABLE II  
COMPARISON OF DC AND RF CHARACTERISTIC FOR MM-HBT AND LM-HBT WITH  $5 \times 5 \mu\text{m}^2$  Emitter Area

|        | $\beta @$<br>$I_C=10\text{mA}$ | $\text{BV}_{\text{CEO}}$<br>(V) | Peak<br>$f_T$ (GHz) | Peak<br>$f_{\text{max}}$ (GHz) |
|--------|--------------------------------|---------------------------------|---------------------|--------------------------------|
| MM HBT | 40                             | 9.8                             | 48                  | 42                             |
| LM HBT | 180                            | 9.2                             | 73                  | 52                             |

and is comparable between MM- and LM-HBTs (Table II). As shown in Fig. 2, the cutoff frequencies  $f_T$  and  $f_{\text{MAX}}$  of the MM-HBT are 48 and 42 GHz, respectively.  $f_T$  and  $f_{\text{MAX}}$  of the LM-HBT are higher at 70 and 50 GHz, respectively. Detailed analysis suggests that the lower  $f_T$  and  $f_{\text{MAX}}$  values of the MM-HBT are due to higher base and collector transit time  $\tau_B$  and  $\tau_C$  rather than the base-collector capacitance ( $C_{BC}$ ) and base-emitter capacitance ( $C_{BE}$ ) and resistances, as they are found to be the same for both types of devices.

### III. MICROWAVE NOISE PERFORMANCE

For evaluation of microwave noise performance, several  $5 \times 5 \mu\text{m}^2$  devices have been measured using an ATN NP5 automated noise-pull measurement system. Fig. 3 compares the minimum noise figure  $F_{\text{MIN}}$  and associated gain ( $G_A$ ) at 2 GHz and different collector current. As expected,  $F_{\text{MIN}}$  decreases linearly with lower collector current for both types of devices and reaches a minimum and then rises again at very low collector current ( $I_C < 1 \text{ mA}$ ).  $F_{\text{MIN}}$  reaches as low as 2 dB for MM-HBTs, whereas the same approaches 1.0 dB for LM-HBTs, which is comparable to reported results [1]. With  $I_C = 2.1 \text{ mA}$ , the MM-HBT exhibits an  $F_{\text{MIN}}$  of 2.7 dB and  $G_A$  of 18 dB. In comparison, the LM-HBT has both lower  $F_{\text{MIN}}$  and lower  $G_A$ . The lower  $F_{\text{MIN}}$  is probably due to lower bulk recombination in the LM-HBT. These results are typical of more than ten HBTs of each type. It is worth noting that one particular LM-HBT with a lower  $\beta$  (45) and, presumably,

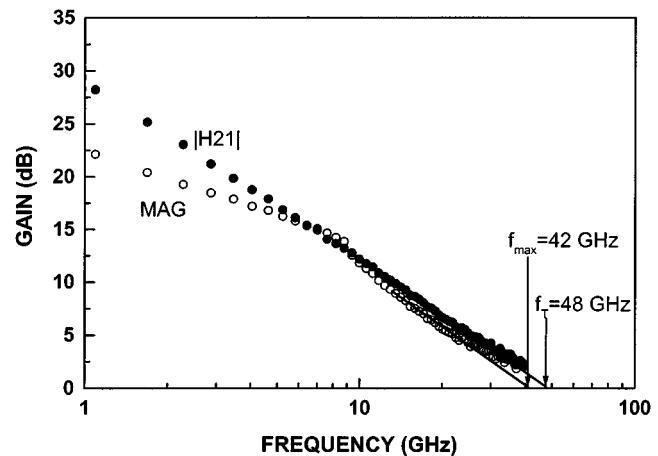



Fig. 2. Maximum available gain (MAG) and current gain ( $|h_{12}|$ ) showing  $f_T$  and  $f_{\text{max}}$  for a  $5 \times 5 \mu\text{m}^2$  MM-HBT.

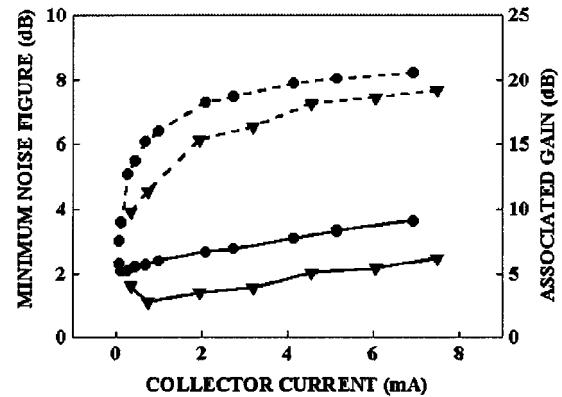



Fig. 3. Comparison at 2 GHz of (—) minimum noise figure and (---) associated gain between (●) an MM-HBT and (▼) an LM-HBT. In both cases, the emitter area =  $5 \times 5 \mu\text{m}^2$  and  $V_{\text{CE}} = 1.5 \text{ V}$ .

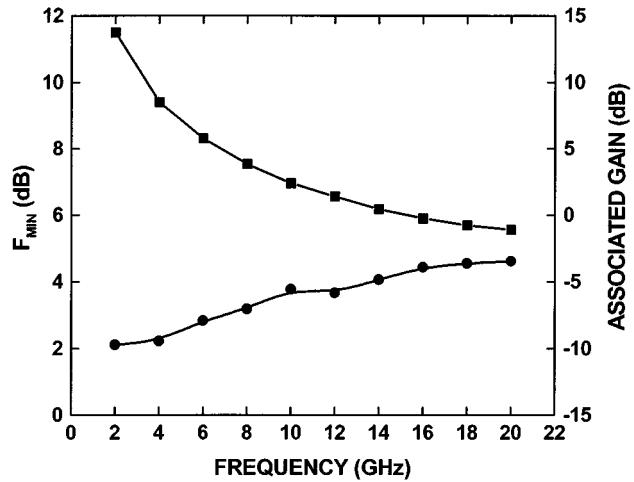



Fig. 4. Frequency versus  $F_{\text{MIN}}$  (●) and associated gain (■) for a  $5 \times 5 \mu\text{m}^2$  emitter area MM-HBT at  $I_C = 1 \text{ mA}$ ,  $V_{\text{CE}} = 2 \text{ V}$ .

higher bulk recombination, performs similarly to the MM-HBT with an  $F_{\text{MIN}}$  of 2.3 dB and a  $G_A$  of 18 dB at  $I_C = 2.1 \text{ mA}$ . As seen in Fig. 4, the  $F_{\text{MIN}}$  increases with frequency, contrary to the reported results [1], presumably because of lower  $f_T$  values of these devices.

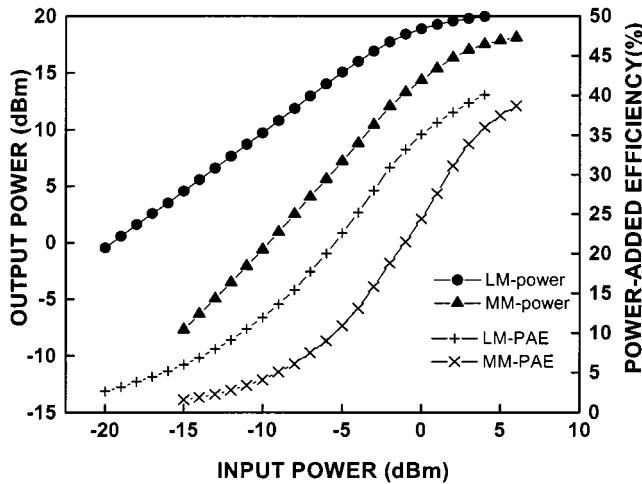



Fig. 5. Output power and PAE between an MM-HBT and LM-HBT at 2.5 GHz  $V_{CE} = 4$  V,  $I_C \cong 2$  mA emitter area  $5 \times 20 \mu\text{m}^2$ .

#### IV. MICROWAVE POWER PERFORMANCE

Microwave power measurements on these HBTs were carried out using an ATN LP1 load-pull system. Fig. 5 compares the power performance of an MM-HBT and LM-HBT. The devices were driven by a constant voltage source in series with a resistor at the base to facilitate a self-biasing current. A resistance of  $1 \text{ k}\Omega$  for LM-HBT and  $750 \Omega$  for MM-HBT were found to be adequate to deliver high power. Both HBTs have an emitter area of  $5 \times 20 \mu\text{m}^2$  and are biased for class-AB operation. All the measurements were carried out on an un-thinned wafer without any heat-sinking mechanism in place.

When tuned for maximum power, the MM HBT delivered 18 dBm (64 mW) and 40% power-added efficiency (PAE) at 2.5 GHz, whereas the LM-HBT exhibited 20 dBm (100 mW or  $1 \text{ mW}/\mu\text{m}^2$ ) and 42% PAE at the same frequency and bias conditions ( $V_{CE} = 4.0$  V) (Fig. 5). When tuned for maximum efficiency, the same MM device offered 59% PAE with saturated output power of 14.5 dBm (30 mW), whereas the LM device exhibited 60% PAE with 15.5-dBm output power. No harmonic tuning was employed. In comparison, the LM-HBT exhibits the power comparable to the benchmark [2], but somewhat reduced power performance of MM-HBTs may be attributed to the self-heating mechanism due to poorer thermal conductivity of the GaAs substrate. The power performance is expected to increase by thinning the wafer and by providing adequate heat-sinking arrangements.

The load reflection coefficients for the maximum power-tuned condition were  $0.24^\circ \angle 153^\circ$  for LM devices and  $0.44^\circ \angle 99^\circ$  for MM devices. The source reflection coefficients for the same were  $0.61^\circ \angle 74^\circ$  and  $0.32^\circ \angle 18^\circ$  for LM and MM devices, respectively. Both source and load conditions reflect existence of much higher capacitance (charges) in MM devices compared to LM devices, which need to be improved in order to achieve greater power, efficiency, and high speed.

At an upper frequency of 7.5 GHz, the  $5 \times 20 \mu\text{m}^2$  MM-HBTs maintains marginally lower power performance of 17 dBm (50 mW) with lower PAE of 23% and small-signal gain of 5 dB. The LM device exhibits 18.5 dBm (72 mW) with 34% PAE and small-signal gain of 9.5 dB. Under constant current

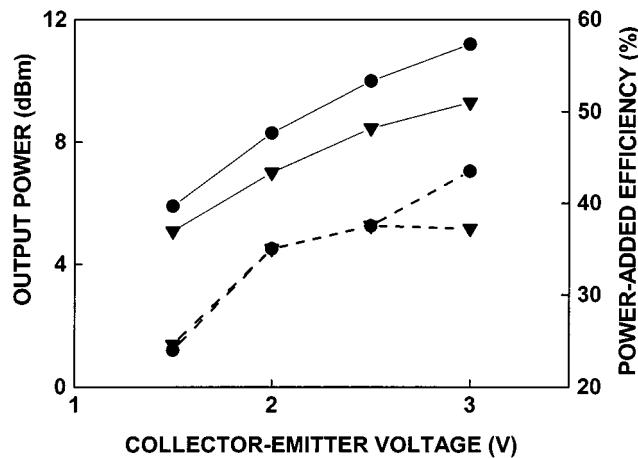



Fig. 6. Comparison at 7.5 GHz of (—) maximum output power and (---) PAE between (●) an MM-HBT and (▼) an LM-HBT at different collector voltages.  $I_C \cong 7$  mA emitter area  $= 5 \times 20 \mu\text{m}^2$ .

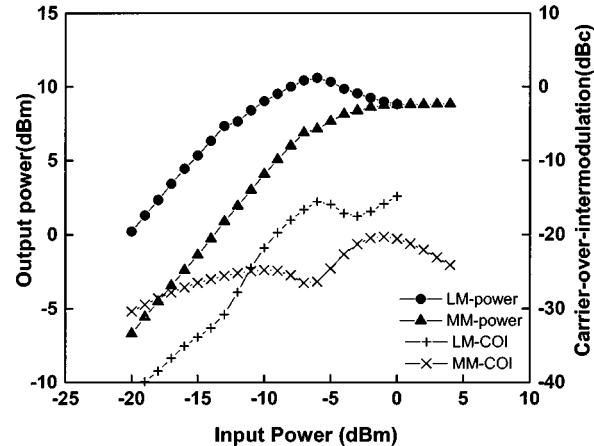



Fig. 7. Comparison at 2.5 GHz of the COI between an MM-HBT and LM-HBT at quiescent bias of  $V_{CE} = 3.5$  V.  $I_C \cong 2$  mA emitter area  $= 5 \times 20 \mu\text{m}^2$ .

source at the base, Fig. 6 shows that both MM- and LM-HBTs exhibit adequate power performance when the collector voltage is reduced from 3 to 2 V. On the other hand, higher bias voltage or current was not possible due to on-state breakdown. This implies that better power performance can be achieved by increasing the collector thickness beyond the present 3500 Å.

#### V. DISTORTION PERFORMANCE

A tow-tone third-order distortion measurement was performed using an ATN LP1 load-pull system at 2.5 GHz in order to evaluate the nonlinear performance of these devices. The load and source impedance were tuned for maximum efficiency and the third-order intermodulation (IM3) products were measured by a spectrum analyzer. Fig. 7 depicts the two-tone fundamental power and the carrier-over-intermodulation (COI) ratio versus input power. Under small-signal operation, the LM device exhibits a greater COI ratio of 40 dBc compared to MM devices (30 dBc). The distortion products for MM device do not increase as rapidly as that of an LM device and, at higher power and IM3, products for MM devices are lower than that of LM devices. This signifies that the MM devices may have


a higher degree of capacitive nonlinearity, cancelling out the resistive nonlinearity resulting in lower distortion products at higher power levels [7].

## VI. CONCLUSION

In conclusion, MM-HBTs and LM-HBTs exhibited comparable microwave performance, with MM-HBTs lower in power and noise performance. The difference in performance can be attributed to interface roughness and base layer quality in addition to lower thermal conductivity of the GaAs substrate. With continued improvement in the MM growth technique and proper heat dissipation mechanism, the performance of MM-HBTs is expected to be on par with that of LM-HBTs. These encouraging preliminary results imply that the superior performance of InP HBTs can be exploited with the more mature manufacturing technology of GaAs.

## REFERENCES

- [1] V. Danelon, F. Aniel, J. L. Benchimol, J. Mba, M. Riet, P. Crozat, G. Vernet, and R. Adde, "Noise parameters of InP-based double heterojunction base-collector self-aligned bipolar transistors," *IEEE Microwave Guided Wave Lett.*, vol. 95, pp. 195–197, May 1999.
- [2] K. W. Kobayashi, A. K. Oki, L.-W. Yang, A. Gutierrez-Aitken, P. Chin, D. Sawdai, W. Okamura, J. Lester, E. Kaneshiro, P. C. Grossman, K. Sato, T. R. Block, H. C. Yen, and D. C. Streit, "A 0.5 watt–40% PAE InP double heterojunction bipolar transistor K-band MMIC power amplifier," in *Proc. Indium Phosphide Related Mater. Conf.*, 2000, pp. 250–253.
- [3] C. S. Whelan, P. F. Marsh, W. E. Hoke, R. A. McTaggart, C. P. McCarroll, and T. E. Kazior, "GaAs metamorphic HEMT (MHEMT): An attractive alternative to InP HEMT's for high performance low noise and power applications," in *Proc. Indium Phosphide Related Mater. Conf.*, 2000, pp. 337–340.
- [4] M. Boudrissa, E. Delos, Y. Cordier, D. Theron, and J. C. De Jaeger, "Enhancement mode metamorphic  $\text{Al}_{0.67}/\text{In}_{0.33}/\text{As}/\text{Ga}_{0.66}/\text{In}_{0.34}/\text{As}$  HEMT on GaAs substrate with high breakdown voltage," *IEEE Electron Device Lett.*, vol. 21, pp. 512–514, Nov. 2000.
- [5] S. P. McAlister, W. R. McKinnon, R. Driad, and A. P. Renaud, "Use of dipole doping to suppress switching in indium phosphide double heterojunction bipolar transistors," *J. Appl. Phys.*, vol. 82, pp. 5231–5234, 1997.
- [6] H. Wang, G. I. Ng, S. P. McAlister, R. Driad, and R. McKinnon, "Hot-carrier induced degradation in InP/InGaAs/InP double heterojunction bipolar transistors," in *Proc. 11th Int. Indium Phosphide Related Mater. Conf.*, 1999, pp. 447–450.
- [7] S. Mass, B. L. Nelson, and D. L. Tait, "Intermodulation in heterojunction bipolar transistor," *IEEE Trans. Microwave Theory Tech.*, vol. 40, pp. 442–448, Mar. 1992.



**Subrata Halder** (S'99–M'00) received the Electronics and Communication Engineering degree from the Indian Institute of Technology, Kharagpur, India, in 1988, and the Masters of Engineering degree from the Nanyang Technological University, Singapore, in 2001.

From 1988 to 1998, he was with the Society for Applied Microwave Electronics Engineering and Research, Department of Electronics, Government of India, where he was involved with RF receiver subsystem development of large phased-array radar systems. From October 1999 to March, 2001, he was a Project Officer with the Microelectronics Division, School of Electrical and Electron Engineering, Nanyang Technological University, where his research interest was heterostructure device characterization, modeling, and monolithic-microwave integrated-circuit (MMIC) design. He is currently a Principal Engineer with DenseLight Semiconductor Pte. Ltd., Singapore, where his responsibilities include modeling of active and passive components and high-speed circuit design.



**Yong Zhong Xiong** (M'98) received the Bachelors and Masters degrees in communication and electronic system from the Nanjing University of Science and Technology (NUST), Nanjing, China, in 1986 and 1990, respectively, and is currently working toward the Ph.D. degree in electrical and electronic engineering at the Nanyang Technological University (NTU), Singapore.

From 1986 to 1992, he was an Engineer with NUST, where he was involved with microwave system and circuit design. In 1992, he became a Lecturer in the Department of Electronic Engineering, NUST. In 1995, he joined the RF and Radios Department, CEI Technologies Pte. Ltd., Singapore. As a Senior Engineer, he was associated with the Centre for Wireless Communications, National University of Singapore, in 1996, where he was involved with the RFIT project. In late 1997, he joined the Microelectronics Centre, NTU, where he is a Research Associate. His major research interests include microwave device modeling, characterization, and MMIC design.

**Geok-Ing Ng** (S'84–M'85–SM'00) received the B.S., M.S., and Ph.D. degrees in electrical engineering from The University of Michigan at Ann Arbor, in 1984, 1986, and 1990, respectively.

From 1991 to 1993, he was a Research Fellow at the Center for Space Terahertz Technology, The University of Michigan at Ann Arbor, where he was involved with microwave/millimeter-wave semiconductor devices and MMICs. In 1993, he joined TRW Inc., Space Park, CA, where he was a Senior Member of Technical Staff engaging in research and development of GaAs and InP-based HEMTs for high-frequency low-noise and power MMIC applications. In 1995, he joined the Nanyang Technological University (NTU), Singapore, where he was a Lecturer in the School of Electrical and Electronics Engineering, and where, since 1996, he has been an Associate Professor. In 1996, he became a Programme Manager for research and development projects on III–V RF devices and MMICs at the Microelectronics Centre, NTU. In 2001, he joined DenseLight Semiconductor Pte. Ltd., Singapore, a company that he co-founded. His current research interests include device physics, fabrication, and characterization of III–V compound semiconductor devices for microwave and optoelectronics application.

Dr. Ng was the recipient of the 1990 European Microwave Prize for his pioneering work on InP-based heterostructure monolithic amplifiers.



**Hong Wang** (S'98–A'00–M'01) received the B.Eng. degree from Zhejiang University, Hangzhou, China, in 1988, and the M.Eng. and Ph.D. degrees from the Nanyang Technological University (NTU), Singapore, in 1998 and 2001, respectively.

From 1988 to 1994, he was with the Institute of Semiconductors, Chinese Academy of Sciences, where he developed InP-based optoelectronic integrated circuits (OEICs). From 1994 to 1995, he was a Royal Research Fellow at British Telecommunications Laboratories, Ipswich, U.K., where he was involved in the development of 0.25- $\mu\text{m}$  InP-based HEMTs using E-beam lithography. Since 1996, he was with the Microelectronics Centre, NTU, where he was originally a Research Associate and is currently an Assistant Professor. In 1997, he spent one month at the Institute for Microstructural Sciences, National Research Council, Ottawa, ON, Canada, where he was involved with the development of InP HBTs. He has authored or co-authored over 50 technical papers related to his research. His current research interests are InP- and GaAs-based compound semiconductor device physics, fabrication technology, and characterization.



**Haiqun Zheng** (M'98) received the B.Sc. degree in electronic science from Jilin University, Changchun, China, in 1987, and the M.Eng. degree in electrical and electronic engineering from the Nanyang Technological University (NTU), Singapore, in 1998.

From 1987 to 1995, he was an Engineer at the Institute of Semiconductors, Chinese Academy of Sciences, where he was engaged in the molecular beam epitaxy (MBE) of III-V compound semiconductor structures. From 1996 to 2001, he was a Research Associate at the Microelectronics Centre, NTU, where he developed phosphorus-containing heterostructures for HEMT and HBT applications using solid source molecular beam epitaxy (SSMBE). He is currently a Principal Engineer with DenseLight Semiconductor Pte. Ltd., Singapore, where he is involved with the growth and characterization of InP-based laser diode (LD) and HBT structures using metal-organic chemical vapor deposition (MOCVD). His current research interests include MBE and MOCVD growth and characterization of compound semiconductors and their heterostructures for microelectronic and optoelectronic applications, device fabrication, and characterization. He has authored or co-authored approximately 80 journal papers and 40 conference papers.

Mr. Zheng is a member of the IEEE Electron Devices Society and the American Vacuum Society.



**James C. M. Hwang** (M'81-SM'82-F'94) received the B.S. degree in physics from the National Taiwan University, Taiwan, R.O.C., in 1970, and the M.S. and Ph.D. degrees in materials science and engineering from Cornell University, Ithaca, NY, in 1973 and 1976, respectively.

He possesses 12 years of industrial experience with IBM, AT&T, General Electric (GE), and GAIN. In 1988, he joined Lehigh University, Bethlehem, PA, as Professor of Electrical Engineering and Director of the Compound Semiconductor Technology Laboratory. He also currently holds a part-time appointment as a Professor at the Nanyang Technological University (NTU), Singapore. He is also active in business. He has been a consultant for the U.S. Government and many electronic companies within the area of RF/microwave devices and integrated circuits. He co-founded GAIN and QED, and watched the former go bankrupt while the latter became a public company (IQE). He has authored or co-authored approximately 150 technical papers and holds four U.S. patents.



**K. Radhakrishnan** (M'01) received the M.Sc. degree in applied physics from the University of Madras, Madras, India, in 1979, the M.Tech. degree in materials science from the Indian Institute of Technology (IIT), Kanpur, India, in 1981, and the Ph.D. degree in physics from the National University of Singapore, Singapore, in 1989.

In 1991, he joined the Nanyang Technological University, Singapore, as a Research Fellow in the School of Electrical and Electronic Engineering, where he is currently involved with MBE growth of compound semiconductor materials, and where he is currently an Associate Professor. His current research includes MBE growth of GaAs- and InP-based heterostructures, device physics, passive components, and fabrication and characterization of microwave integrated devices and circuits.