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Abstract—For the first time, microwave noise and power per-
formance of metamorphic InP heterojunction bipolar transistors
(MM–HBTs) grown on GaAs substrates are reported. We find that
microwave performance of MM–HBTs is comparable to that of lat-
tice-matched InP heterojunction bipolar transistors of identical de-
sign. The preliminary results imply that the superior performance
of InP heterojunction bipolor transistors can be confidently ex-
ploited with the more mature manufacturing technology of GaAs.

Index Terms—Heterojunction bipolar transistors, heterojunc-
tions, microwave transistors.

I. INTRODUCTION

T HE purpose of this paper is to assess the viability of
InP metamorphic InP heterojunction bipolar transistors

(MM–HBTs) that are fabricated on a GaAs substrate. We report,
for the first time, microwave noise and power performance of InP
MM–HBTs grown on a GaAs substrate. We find the performance
of InP MM–HBTs is comparable to that of lattice-matched InP
heterojunction bipolar transistors (LM–HBTs) of identical
design, but fabricated on an InP substrate. This finding implies
that high-performance InP heterojunction bipolar transistors
(HBTs) can be manufactured at lower cost and higher volume
by the better established GaAs foundries.

HBTs lattice matched (LM) to InP (i.e., LM–HBTs) have
demonstrated superior microwave noise and power performance
[1], [2] to that of GaAs HBTs. However, the brittle nature, small
size, and high cost of InP substrates hinder high-volume and
low-cost manufacturing. These limitations can be alleviated
by growing the InP structure metamorphically on a GaAs sub-
strate. Metamorphic (MM) high electron-mobility transistors
(HEMTs) have already exhibited excellent performance and
reliability [3], [4]. By contrast, little has been reported on MM
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TABLE I
LAYER STRUCTURE OFMM–HBT

HBTs. The following is the first comprehensive comparison of
microwave noise and power performance of MM–HBTs with
that of LM–HBTs.

II. DEVICE DESCRIPTION

Table I lists the HBT layer structure that was grown
metamorphically on a GaAs substrate by using solid-source
molecular beam epitaxy (MBE). The structure includes an InP
emitter, an In Ga As base, and an In Ga As–InP
composite collector. A linearly graded InGa (
to ) buffer layer is used to relieve the strain between GaAs
and InP. The InGaAs/InP composite collector structure is used
to avoid current blocking. A dipole doping is employed at
the InGaAs/InP interface in the composite collector to further
reduce the current blocking effect [5]. Device fabrication is
essentially the same as that for the LM–HBTs, which employs
a standard mesa isolation process. Details of the fabrication
technique are reported in [6].

Fig. 1 shows typical collector characteristics of an MM–HBT
with an emitter area of 5 5 m . The common-emitter current
gain of the MM–HBT peaks at 40, while that of an LM–HBT
of comparable size peaks at 180. Detailed analysis shows that
the lower current gain is probably due to a rougher base–emitter
interface, as well as increased bulk recombination in the base.
The open-base breakdown voltage is greater than 9 V
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Fig. 1. Collector characteristics of an MM–HBT and an LM–HBT with a
5 � 5 �m emitter.I = 0; 50 . . . 250 �A for the MM–HBT andI =
0; 10 . . . 50 �A for the LM–HBT, bottom up.

TABLE II
COMPARISON OFDC AND RF CHARACTERISTIC FORMM–HBT AND

LM–HBT WITH 5� 5 �m EMITTER AREA

and is comparable between MM- and LM–HBTs (Table II). As
shown in Fig. 2, the cutoff frequencies and of the
MM–HBT are 48 and 42 GHz, respectively. and of
the LM–HBT are higher at 70 and 50 GHz, respectively. De-
tailed analysis suggests that the lowerand values of
the MM–HBT are due to higher base and collector transit time

and rather than the base–collector capacitance ()
and base–emitter capacitance ( ) and resistances, as they are
found to be the same for both types of devices.

III. M ICROWAVE NOISE PERFORMANCE

For evaluation of microwave noise performance, several
5 5 m devices have been measured using an ATN NP5
automated noise–pull measurement system. Fig. 3 compares
the minimum noise figure and associated gain ( )
at 2 GHz and different collector current. As expected,
decreases linearly with lower collector current for both types
of devices and reaches a minimum and then rises again at very
low collector current ( mA). reaches as low as
2 dB for MM–HBTs, whereas the same approaches 1.0 dB for
LM–HBTs, which is comparable to reported results [1]. With
I mA, the MM–HBT exhibits an of 2.7 dB and

of 18 dB. In comparison, the LM–HBT has both lower
and lower . The lower is probably due to lower

bulk recombination in the LM–HBT. These results are typical
of more than ten HBTs of each type. It is worth noting that
one particular LM–HBT with a lower (45) and, presumably,

Fig. 2. Maximum available gain (MAG) and current gain (jh12j) showingf
andf for a 5� 5 �m MM–HBT.

Fig. 3. Comparison at 2 GHz of (—) minimum noise figure and (- - -)
associated gain between (�) an MM–HBT and ( ) an LM–HBT. In both cases,
the emitter area= 5 � 5 �m andV = 1:5 V.

Fig. 4. Frequency versusF (�) and associated gain () for a 5� 5 �m
emitter area MM–HBT atI = 1 mA, V = 2 V.

higher bulk recombination, performs similarly to the MM–HBT
with an of 2.3 dB and a of 18 dB at mA.
As seen in Fig. 4, the increases with frequency, contrary
to the reported results [1], presumably because of lower
values of these devices.
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Fig. 5. Output power and PAE between an MM–HBT and LM–HBT at
2.5 GHzV = 4 V, I �= 2 mA emitter area 5� 20�m .

IV. M ICROWAVE POWER PERFORMANCE

Microwave power measurements on these HBTs were carried
out using an ATN LP1 load–pull system. Fig. 5 compares the
power performance of an MM–HBT and LM–HBT. The devices
were driven by a constant voltage source in series with a resistor
at the base to facilitate a self-biasing current. A resistance of
1 K for LM–HBT and 750 for MM–HBT were found to be
adequate to deliver high power. Both HBTs have an emitter area
of 5 20 m and are biased for class-AB operation. All the
measurements were carried out on an un-thinned wafer without
any heat-sinking mechanism in place.

When tuned for maximum power, the MM HBT delivered
18 dBm (64 mW) and 40% power-added efficiency (PAE) at
2.5 GHz, whereas the LM–HBT exhibited 20 dBm (100 mW
or 1 mW/um ) and 42% PAE at the same frequency and bias
conditions ( V) (Fig. 5). When tuned for maximum
efficiency, the same MM device offered 59% PAE with saturated
output power of 14.5 dBm (30 mW), whereas the LM device
exhibited 60% PAE with 15.5-dBm output power. No harmonic
tuning was employed. In comparison, the LM–HBT exhibits the
power comparable to the benchmark [2], but somewhat reduced
power performance of MM–HBTs may be attributed to the self-
heating mechanism due to poorer thermal conductivity of the
GaAs substrate. The power performance is expected to increase
by thinning the wafer and by providing adequate heat-sinking
arrangements.

The load reflection coefficients for the maximum power-
tuned condition were 0.24 153 for LM devices and 0.44
99 for MM devices. The source reflection coefficients for the
same were 0.61 74 and 0.32 18 for LM and MM devices,
respectively. Both source and load conditions reflect existence
of much higher capacitance (charges) in MM devices compared
to LM devices, which need to be improved in order to achieve
greater power, efficiency, and high speed.

At an upper frequency of 7.5 GHz, the 5 20 m
MM–HBTs maintains marginally lower power performance of
17 dBm (50 mW) with lower PAE of 23% and small-signal gain
of 5 dB. The LM device exhibits 18.5 dBm (72 mW) with 34%
PAE and small-signal gain of 9.5 dB. Under constant current

Fig. 6. Comparison at 7.5 GHz of (—) maximum output power and (- - -) PAE
between (�) an MM–HBT and ( ) an LM–HBT at different collector voltages.
I �= 7 mA emitter area= 5� 20�m .

Fig. 7. Comparison at 2.5 GHz of the COI between an MM–HBT and
LM–HBT at quiescent bias ofV = 3:5 V. I �= 2 mA emitter area=
5� 20 �m .

source at the base, Fig. 6 shows that both MM- and LM–HBTs
exhibit adequate power performance when the collector voltage
is reduced from 3 to 2 V. On the other hand, higher bias voltage
or current was not possible due to on-state breakdown. This
implies that better power performance can be achieved by
increasing the collector thickness beyond the present 3500 Å.

V. DISTORTION PERFORMANCE

A tow-tone third-order distortion measurement was per-
formed using an ATN LP1 load–pull system at 2.5 GHz in order
to evaluate the nonlinear performance of these devices. The
load and source impedance were tuned for maximum efficiency
and the third-order intermodulation (IM3) products were
measured by a spectrum analyzer. Fig. 7 depicts the two-tone
fundamental power and the carrier-over-intermodulation (COI)
ratio versus input power. Under small-signal operation, the LM
device exhibits a greater COI ratio of 40 dBc compared to MM
devices (30 dBc). The distortion products for MM device do
not increase as rapidly as that of an LM device and, at higher
power and IM3, products for MM devices are lower than that
of LM devices. This signifies that the MM devices may have
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a higher degree of capacitive nonlinearity, cancelling out the
resistive nonlinearity resulting in lower distortion products at
higher power levels [7].

VI. CONCLUSION

In conclusion, MM–HBTs and LM–HBTs exhibited compa-
rable microwave performance, with MM–HBTs lower in power
and noise performance. The difference in performance can be
attributed to interface roughness and base layer quality in addi-
tion to lower thermal conductivity of the GaAs substrate. With
continued improvement in the MM growth technique and proper
heat dissipation mechanism, the performance of MM–HBTs is
expected to be on par with that of LM–HBTs. These encour-
aging preliminary results imply that the superior performance
of InP HBTs can be exploited with the more mature manufac-
turing technology of GaAs.
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